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QUADRATIC FIELDS WITH SPECIAL CLASS GROUPS 

JAMES J. SOLDERITSCH 

ABSTRACT. For every prime number p > 5 it is shown that, under certain 
hypotheses on x E Q, the imaginary quadratic fields Q( vx2P - 6xP + 1) have 
ideal class groups with noncyclic p-parts. Several numerical examples with 
p = 5 and 7 are presented. These include the field 

Q( V'-4805446 123032518648268510536). 

The 7-part of its class group is isomorphic to C(7) x C(7) x C(7) , where C(n) 
denotes a cyclic group of order n . 

1. INTRODUCTION 

The ideal class groups of the rings of integers of imaginary quadratic number 
fields have been studied intensively. Quite a number of things can be said 
about the 2-part of these finite abelian groups. For instance, by GauB's genus 
theory, the number of independent generators of the 2-part of the class groups 
is easily expressed in terms of the number of primes dividing the discriminant 
of the field. The "rest" of the class group, the so-called odd part, is not so well 
understood. It seems that this part is almost always cyclic [1]. In other words, 
for odd primes p, the number of independent generators of the p-part, or the 
p-rank, of the class group does usually not exceed one. It appears to be difficult 
to find imaginary quadratic number fields whose class groups have a high p-rank 
for some odd prime p. 

In [10], Yamamoto exhibited for each integer n > 1 an infinite number of 
imaginary quadratic fields with a copy of C(n) x C(n) in their class groups. 
Here, C(n) denotes a cyclic group of order n. Shanks [7] was the first to ex- 
hibit examples where one needs at least three independent generators to generate 
the odd part of the class group. More precisely, in 1971 he exhibited imaginary 
quadratic fields whose class groups have 3-rank at least three. Craig [2] subse- 
quently was able to show that there exist infinitely many quadratic fields with 
3-rank at least three. Later, examples of class groups with 3-rank at least 4, 5, 
and even 6 have been found by Diaz y Diaz, Shanks and Williams [3], Quer 
and Llorente [4, 5], and others. 

In this paper several examples of imaginary quadratic number fields are pre- 
sented whose class groups have p-rank at least 3 for p = 5 or 7. These examples 
were originally documented in the author's 1977 Lehigh University thesis [9]. 
Since then, other examples with 5-rank at least 3 or even 4. and with 7-rank at 
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least 3, have been found [4, 6]. No examples with p-rank at least 3 seem to 
be known for any prime p > 7. However, the author believes that the method 
used successfully to find the examples shown in this paper has the potential to 
produce examples of p-rank at least three for primes p > 7. 

In the next section it will be shown that, for each odd prime p > 5 and 
under suitable hypotheses on x E Q, the class group of the number field 

Q( xA2P -6xP + 1) 

has a subgroup isomorphic to C(p) x C(p) . In the final section several numerical 
examples are presented. These include six examples where the 5-rank is at least 
3 and one example where the 7-rank is at least 3. The class groups have all been 
calculated by means of Shanks's algorithm [8]. 

2. Two INDEPENDENT GENERATORS 

In this section we will, for each prime number p > 5, exhibit a large family of 
imaginary quadratic fields whose class groups admit C(p) x C(p) as a subgroup 
of their ideal class groups. It can, in fact, be shown that the family is infinite 
[9]. 

In the proposition below two ideals are exhibited whose pth powers are 
principal. In the theorem sufficient conditions are given for these ideals to be 
independent and of order p in the class group. 

Proposition. Let p > 5 be a prime number and let a, b, f E Z with a > 0, 
with gcd(a, 2b) = 1, and with b2+ a- = f2. Suppose that d = b2- aP is not a 
square. Let I and J be the two ideals in the ring of integers OF of F = Q(d) 
given by I =(a, b + Vd) and J = (a2, b2+ f d) . Then 

(i) N(I)=a and N(J) =a2. 
(ii) IP = (b + Vd) and JP = (b2 + f J) . 
(iii) All powers of I and J are primitive 0-ideals. 

Proof. (i) Since d is not a square, the field F is a quadratic extension of Q. 
The conjugate of x E F is denoted by T. We have 

I .7 = (a2, a(b + VW), a(b - v/T), b2 - d) = a I', 

where I' is an ideal of OF containing a, b + VW, and b - v/d. This implies 
that 2b e I' and, since gcd(a, 2b) = 1, that I' is the unit ideal OF. By the 
multiplicativity of the norm we have that N(I)N(I) = a2 and therefore that 
N(I) = a. The proof for J is similar: just replace a, b, and d by a2, b2, 
and f2d, respectively. This proves (i). 

(ii) Since (b + v'd)(b - VW) = aP, we have that 

IP C (a", b-+ Vd) c (b+V). 

Since aP = b2- d, the norms of these ideals are equal. This shows that IP = 

(b + VW). The proof for J is similar. It follows from the fact that a2p - 

b4 f f2d. This proves (ii). 
(iii) We recall that an ideal is called primitive if it is not divisible by any 

integer n > 1. Suppose 1 is a prime number dividing a power of I and let p 
be a prime ideal of F dividing 1. Then p divides I and hence a. Since a 
is odd and coprime with d, we conclude that p is unramified in F = Q(vi). 
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Therefore, 1 divides I = (a, b + /d) . This implies that 1 divides both a and 
b, which is impossible, since gcd(a, b) = 1 . The proof for J is similar. This 
completes the proof of the proposition. 51 

Lemma. Let F be an imaginary quadratic numberfield with ring of integers OF 
and discriminant AF. Let I1 and I2 be two primitive OF-ideals of norm less 
than I5AF1/2. If I, _ I2 in the class group of F, then I1 and I2 are equal. 
Proof. It is well known and easily established that for every nonzero ideal I of 
OF, its inverse in the ideal class group is given by the class of I. Therefore, 
if I,=I2, we have that II72 = (a) for some a E OF. It follows that N(a) < 

IAF /4. Since F is an imaginary quadratic number field, this implies that 
a E Z. On the other hand, I212 = (A) with / E Z. Combining this with 
I1I2 = (a), we find 

(9)I1 = (a)I2. 

Since the ideals I, and I2 are not divisible by integers n > 1 , we see that 
a = +?, and hence that I1 = I2, as required. El 

The following is the main result of this section. 

Theorem. Let p > 5 be a prime and let a, b, f E Z with gcd(a, 2b) = 1 and 
with b2 + aP = f2. Suppose that d = b2 - aP < 0. Let F be the imaginary 
quadratic field Q(v'd) with ring of integers OF and discriminant AF. Let I 
and J be the two OF-ideals given by I = (a, b + Vd) and J = (a2, b2+ f V) . 
If 1 < aP1 < IAFI/4, then the group generated by the classes of I and J 
generate a subgroup isomorphic to C(p) x C(p) in the class group of F. 
Proof. By Proposition (i) and the fact that 1 < aw1 < IAFI/4, we have that 
1 < a = N(I) < IA-FI/2. We see that I is not the trivial ideal and, by the 
lemma applied to I and OF, that it is not principal. Therefore, by Proposition 
(ii) the class of I generates a cyclic subgroup of order p inside the class group 
of F. 

If the class of J were in this subgroup, then J = Ik in the class group for 
some k E Z. Therefore, 

j-=Ik or J =_ k for some O < k < p/2. 

Since aP-1 < IAI/4, the norms of the ideals Ik and -k, for 0 < k < p/2, 
do not exceed IAF[1/2. By Proposition (iii) the ideals Ik, 7k, and J are 
all primitive. Since p > 5, the norm of J does not exceed IAF 1/2, and it 
follows from the lemma that actually 

J = Ik or J =7I for some 0 < k < p/2. 

Taking norms, we can easily see that this implies j = 12 or J = I . Taking 
pth powers and using Proposition (ii) gives the following equality of principal 
ideals: 

(b2 + f/d)= (b + )2. 
Since 2 < aP-1 < IAFI/4, we see that AF : -3 or -4 and hence that 0 = 
{?1}. Therefore, taking real parts, we get ?b2 = b2 + d. Since AF :A -8 or, 
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equivalently, F :A Q( =-2), this equation has no solutions. This shows that the 
class of J is not in the group generated by the class of I. By Proposition (ii) 
the class of J has order p and the result follows. 5 

Solving the equations satisfied by a, b, and f, we obtain a family of fields 
F : 

Corollary. Let p > 5 be a prime. The class groups of 

F = Q( x2P-6xP+1) 

contain a subgroup isomorphic to C(p) x C(p) whenever x = s/t E Q satisfies 
3 - v < xP < 3 + V, s, t E Z both odd, and 1 < (st)P- < IAFI/4. 
Proof. We solve the equation 

f2-b2 = (f-b)(f+b) =ap 

of the theorem with a > 1 an odd integer and gcd(a, 2b) = 1: we must have 
that f is odd and b is even, and hence that gcd(f + b, f - b) = 1 as well. We 
conclude that f - b = SP, f + b = tP, and a = st for s, t E Z odd integers 
with st > 1. This implies that 

a = st , b = (tP - sP)12 , 4d = t'P - 6tPsP + 52p. 

Here, d = b2- aP as in the theorem. We have that 

F = Q(V) = Q( x2P-6xP + 1) 

with x = s/t. The corollary is now clear: the first condition ensures that d < 0 
and hence that F is an imaginary quadratic number field. The second ensures 
that a = st is odd, and the last one is just the condition 1 < aP-I < IAFI/4. 
Finally, it is clear that gcd(a, 2b) = 1 whenever gcd(s, t) = 1 . cl 

We note in passing that an analogous result can be established for p = 3 
and that, although all of the class groups so constructed are guaranteed to have 
3-rank at least 2, many of them turn out to have 3-rank three or more [9]. 

3. NUMERICAL EXAMPLES 

In this section we present the results of some of the calculations done for [9]. 
We have calculated the class groups of the fields that occur in the corollary with 
p = 5 or 7. Only x = s/t e Q were considered with 

I t2P6stP +s2PI 

less than a certain bound. After dividing out any square factors, the result- 
ing discriminants A(s, t) were, in order of magnitude, fed to the computer 
program CLASNO, which calculated the structure of the class group of F = 
Q( t2P - 6sPtP + s2P) . Since CLASNO is based on Shanks's algorithm [8], it 
is possible that we only find a proper subgroup of the ideal class group. This 
is, however, very unlikely to happen and, most probably, we have each time 
calculated the entire class group. 
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TABLE I 

Group Freq 

C(5) x C(5) 259 

C(52) x C(5) 55 

C(S3) x C(S) 20 

C(S4) x C(5) 4 

C(S5) x C(5) 1 

C(S) x C(5) x C(S) 4 

C(S2) x C(S) x C(5) 2 

TABLE II 

(s, t) A(s, t) hF class group 

(19, 15) -4574009420324 1088000 C(5) x C(5) x C(5) 

xC(2) x C(4) x C(1088) 

(39, 29) -51887726858696 4492500 C(5) x C(5) x C(25) 

xC(7188) 

(57, 53) -19853645645824292 53813000 C(5) x C(5) x C(5) 

xC(2) x C(215252) 

(61, 49) -638330124616229092 177136000 C(5) x C(5) x C(5) x C(2) 

xC(2) x C(2) x C(177136) 

(95, 69) -10293170626023930824 1927395500 C(5) x C(5) x C(5) 

xC(15419164) 

(99, 95) -291202881994157929124 13632240000 C(5) x C(5) x C(25) x C(2) 

xC(2) x C(5452896) 

For p = 5 we have calculated, in this way, 345 class groups. The frequen- 
cies of the isomorphism types of the 5-parts that we encountered are given in 
Table I. 

We found six cases where the 5-rank is at least 3. These are described in 
more detail in Table II. By hF we denote the class number, i.e., the cardinality 
of the class group of F = Q(Vt2P - 6sPtP + s2P). In the cases (s, t) = (39, 29) 
and (57, 53), the discriminant A(s, t) is equal to t2P - 6s-tP + 2P divided by 
72 . In all other cases, A(s, t) = t2P 6s-tP + s2P . 

For p = 7 we have calculated 200 class groups. The frequencies of the 
isomorphism types of the 7-parts that we encountered are given in Table III. 
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TABLE III 

Group Freq 

C(7) x C(7) 161 

C(72) x C(7) 32 

C(73) x C(7) 5 

C(72) x C(72) 1 

C(7) x C(7) x C(7) 1 

Only the 200th case was an example with 7-rank of the class group at least 
3. It occurred for (s, t) = (87, 85). We have 

A(87, 85) = -4805446123032518648268510536. 

The class number of F = Q(VA/(87, 85)) is 37212446915840, and the class 
group is isomorphic to 

C(7) x C(7) x C(7) x C(2) x C(2) x C(27122774720). 
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